M. Hrušák and D. M. Alcántara introduced a Wadge-like game: Let \mathcal{I} and \mathcal{J} be two Borel ideals on ω . The *Comparison game* for \mathcal{I} and \mathcal{J} denoted by $G(\mathcal{I}, \mathcal{J})$ plays as follows: In step n, Player I plays $I_n \in \mathcal{I}$, Player II play $J_n \in \mathcal{J}$, Player II wins if $\bigcup_{n \in \omega} I_n$ iff $\bigcup_{n \in \omega} J_n \in \mathcal{J}$. If Player II has a winning strategy, we denote $\mathcal{I} \sqsubseteq \mathcal{J}$. We say that $\mathcal{I} \simeq \mathcal{J}$ if $\mathcal{I} \sqsubseteq \mathcal{J}$ and $\mathcal{J} \sqsubseteq \mathcal{I}$.

In this talk we will brief introduce some known properties of Comparison game, and then answer some questions asked by M. Hrušák and D. M. Alcántara list below:

- Is the order \sqsubseteq linear (a well order)?
- Are there exactly two class of $F_{\sigma\delta}$ non F_{σ} -ideals?
- How many classes of $F_{\sigma\delta\sigma}$ -ideals are there?

To answer these questions, we define a operator on Borel ideal by $T(\mathcal{I})$ is the ideal on ${}^{<\omega}2$ generated by $\{\{x|n : n \in \omega\} : x \in \mathcal{I}\}$. The main result as follows: If \mathcal{I}, \mathcal{J} be two Borel ideals which above $D_{\omega}(\Sigma_2^0)$, then $\mathcal{I} \equiv_W \mathcal{J} \Leftrightarrow T(\mathcal{I}) \simeq T(\mathcal{J})$.

References

- 1. F. v. Engelen, On Borel ideals, Annals of Pure Applied Logic. 70 (1994), 177-201.
- M. Hrušák and D. M. Alcántara, Comparison game on Borel ideals, Comment. Math. Univ.Carolin. 52, 2(2011), 191-204.
- A. S. Kechris, *Classical Descriptive Set Theory*, Graduate Texts in Mathematics 156, Springer-Verlag, 1995.